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The axisymmetric, thermocapillary-driven motion of a pair of non-conducting, 
spherical drops in near contact is analysed for conditions of small Reynolds and 
Marangoni numbers. The pairwise motion and an associated contact force are 
computed by considering touching drops in point contact. Relative motion for nearly 
touching drops results from the contact force balanced by a lubrication resistance. A 
new, analytical solution is obtained for the axisymmetric temperature field around an 
unequal pair of non-conducting, tangent spheres embedded in an ambient temperature 
gradient. Numerical results for the painvise migration velocity, contact force, and the 
relative and individual drop velocities are presented for all size ratios and a wide range 
of viscosity ratios, and asymptotic formulae are derived for small size ratios. For nearly 
equisized drops, the ratio of the relative velocity for two drops in near contact to that 
for widely separated drops is similar for thermocapillary-driven and gravity-driven 
motion. For small and moderate size ratios, however, this ratio is much larger for 
thermocapillary-driven relative motion than for gravity-driven relative motion, 
indicating that the former represents a more efficient coalescence mechanism. An 
explanation for this finding is provided in terms of the thermocapillary motion of the 
interface of the larger drop aiding the withdrawal of continuous phase from between 
the two drops. 

1. Introduction 
Predicting and controlling the microstructural properties of an emulsion of drops of 

one liquid phase finely dispersed in another liquid is an important goal in many 
chemical and materials processes. The drop size distribution in an emulsion evolves 
largely as the result of coalescence between droplets of the dispersed phase to form 
larger drops. On the microscale, coalescence results from pairwise relative motion 
between the drops. Under isothermal conditions in an unstirred, normal-gravity 
environment, buoyancy-driven migration is the primary source of the relative 
movement of drops larger than a few microns in diameter. In the presence of a 
temperature gradient, however, thermocapillary migration may dominate buoyancy 
migration, especially in reduced-gravity environments. 

Although the focus of this paper is on thermocapillary motion, results for buoyancy 
motion are briefly reviewed first so that similarities and differences between the two 
cases may be demonstrated. Under low-Reynolds-number conditions, for which 
viscous forces dominate inertia, the buoyancy-driven migration velocity of an isolated 
spherical drop (denoted drop 1) through an unbounded solvent with viscosity ,u is given 
by the Hadamard-Rybczynski formula (see Kim & Karilla 1991): 
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where a and hp are the drop radius and viscosity, respectively, Ap is the density 
difference between the drop and surrounding fluid, and g is the gravitational 
acceleration. The superscripts G and 0 refer to gravity motion and isolated drops, 
respectively. The buoyancy force acting on the drop is 

(1.2) Fl G - 4  - 3~a3Apg .  

This force is balanced by the hydrodynamic, viscous drag on the drop, 
F,H?O = - RY*OU,G.O, where the hydrodynamic resistance for an isolated drop is 

RFj O = 2npa(3/\ + 2) / (h  + 1). (1 *3) 
Under the additional constraint of small Marangoni numbers, for which heat 

conduction dominates heat convection, the thermocapillary migration velocity of an 
isolated, non-conducting spherical drop is (Young, Goldstein & Block 1959) 

where VT, is the ambient temperature gradient and /3 = -ay/aT describes the 
temperature dependence of interfacial tension, y, on the drop surface. The superscript 
T refers to thermocapillary motion. The interfacial tension for most (but not all) 
systems decreases with increasing temperature, indicating that drops migrate in the 
direction of increasing temperature. In contrast to buoyancy migration, there is no 
external force acting on a drop in thermocapillary migration; the drop ‘swims’ 
through the surrounding fluid as a result of the thrust generated by the interfacial 
tension gradient. Because of the linearity of the governing equations, however, we can 
consider the zero net external force to be the superposition of a ‘thennocapillary 
force’, FT2O = R,TroVT,, required to hold the drop stationary in a temperature 
gradient and the hydrodynamic force, F7.O = - RF, on the drop translating at its 
thermocapillary migration velocity in an isothermal fluid. Using (1.3) and (1.4), the 
thermocapillary force on an isolated drop is 

A quantitative criterion for the relative importance of buoyancy-driven and 
thermocapillary-driven migration of isolated drops is given by the ratio of the velocities 
(1.1) and (1.4): 

This result indicates that thermocapillary-driven migration becomes increasingly 
important for smaller drops, drops of near-neutral buoyancy, strong temperature 
gradients, and reduced gravity environments. 

The interactions of a pair of spherical drops in buoyancy-driven or thennocapillary- 
driven motion has been analysed by the method of reflections (Kim & Karrila 1991 ; 
Anderson 1985) and the method of images (Fuentes, Kim & Jeffrey 1988, 1989) for 
drops several radii apart. Solutions using bispherical coordinates (Rushton & Davies 
1973; Haber, Hetsroni & Solan 1973; Zinchenko 1978, 1980; Keh & Chen 1990) and 
twin-spherical expansions (Satrape 1992) have been developed for smaller separations. 
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FIGURE 1. Defining sketch for two drops in close contact. 

Unfortunately, bispherical-coordinate solutions and twin-spherical expansions become 
singular as the two drops come into contact; thus, the relative velocities between drops 
separated by a gap width, h, cannot be computed from these series solutions in the limit 
h+O. 

Asymptotic analysis and lubrication theory have been used to describe the 
hydrodynamic resistance and relative motion of two drops moving parallel to their line 
of centres (Zinchenko 1983; Davis, Schonberg & Rallison 1989; Yiantsios & Davis 
1991). The aim of the present work is to provide a similar description of the 
axisymmetric, near-contact motion of a droplet pair in thermocapillary-driven 
migration (figure 1) at small Reynolds and Marangoni numbers. The development is 
presented together with that for buoyancy-driven motion in order to elucidate the 
similarities and differences between the two mechanisms. The drops have radii a,  = a 
and a, = KU(O < K 6 1). The distance h separating the drop surfaces is assumed small 
relative to either drop radius: 

where a = ~ a / ( l  +K) is the reduced radius of the droplet pair. The continuous 
(suspending) and disperse phases are assumed to be Newtonian, incompressible fluids 
with viscosities p and Ap, respectively. The suspending fluid is assumed to be 
unbounded and quiescent at infinity. 

Appropriately defined, modified Bond numbers (Yiantsios & Davis 1991) are 
assumed to be sufficiently small that the drops remain spherical due to interfacial 
tension. The PCclet number for each drop is large compared to unity, so that Brownian 
motion is not considered. Non-hydrodynamic interdroplet forces such as van der 
Waals or electrostatic interactions are also not incorporated in the analysis. The drop 
surfaces are assumed to be clean and free of surfactant effects; thus, under isothermal 
conditions, the tangential component of the hydrodynamic stress is continuous across 
the drop surfaces. The various restrictions are generally met for drops with diameters 
between a few microns and a tenth of a millimetre, or so, depending on the physical 
parameters investigated (Zhang & Davis 1992). Under these conditions, the 
temperature field is decoupled from the velocity field and satisfies Laplace’s equation : 

8 = h/a 4 1, (1.7) 

V2T(x)  = 0. (1 *8> 

T(x)  - T, = VT;X (1x1 + CO), (1.91 

Far from the drops, a linear temperature distribution is assumed: 

where the applied temperature gradient, VT,, is parallel to the line of centres 
connecting the two drops, and T, is the temperature at the origin, which is located in 



110 M .  Loewenberg and R.  H .  Davis 

the small gap separating the drops. The thermal conductivity of the disperse phase is 
assumed to be much less than the conductivity of the suspending phase; hence, the 
drops may be treated as non-conducting: 

V T . n  = 0 on the drop surfaces. (1.10) 

The temperature field is continuous across the drop surfaces. The tangential stress 
balance on the drop surfaces is modified by this temperature field (Levich 1962, p. 384): 

&T-aT = -Vy = PVT on the drop surfaces, (1.11) 

where gT and &T are the tangential components of hydrodynamic stress in the 
continuous and disperse phases. We note that V T  is necessarily tangent to the surfaces 
of non-conducting drops because of (1.10). 

In the following section (92), we formulate expressions for drop velocities in terms 
of certain pairwise resistance functions and the lubrication resistance between two 
drops. Asymptotic formulae for the lubrication resistance are summarized in 93. A 
detailed scaling analysis is given in 94. An analytical solution for the axisymmetric 
temperature field external to an unequal pair of non-conducting, tangent spheres 
embedded in an ambient temperature gradient is given in $5. In $6, the numerical 
procedure for determining the velocity field away from the small gap separating two 
drops in an ambient temperature field is presented, and results for the pairwise 
migration velocity, contact force, and individual drop velocities are given in 97. 
Concluding remarks are provided in 3 8. 

2. Problem formulation 
We first review the theoretical development for the interaction of two drops in 

buoyancy-driven motion, and then present an analogous development for thermo- 
capillary-driven motion. The force balance on each of two neighbouring drops 
translating along their line of centres under buoyancy-driven conditions is FF + F: = 0, 
where FF and FF are the components of the buoyancy and hydrodynamic forces, 
respectively, acting on each drop i parallel to the line of centres. The buoyancy force 
is FF = m,g, where m, = &a: Ap is the mass of each drop i, minus the mass of fluid it 
displaces, and ai is its radius. The hydrodynamic forces may be described in terms of 
resistance functions (Zinchenko 1978) : 

FY = - Afi( U, - UJ - A; U,, F: = - A:( U,  - U,) - A; U,, (2.1) 
where U, and U, are the velocities of the two drops. The resistance functions satisfy a 
Lorentz-type reciprocal relation: A; = A: - A:. The velocities are found by inverting 
these equations : 

Although neutrally buoyant drops experiencing thermocapillary motion are force 
free, we may consider that this results from a balance of thermocapillary and 
hydrodynamic forces : FT + FF = 0. The hydrodynamic forces, FP, are those acting on 
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each of two drops translating with velocities 27: through an unbounded, isothermal 
fluid. These hydrodynamic forces are given by (2.1). The thermocapillary forces, FT, 
are those experienced by each of two stationary drops that are embedded in an ambient 
temperature gradient, VT,. Considering drops whose line of centres is aligned with the 
ambient temperature gradient, the thermocapillary forces have the form 

where AT is the thermocapillary resistance of drop i. Using (2. I) ,  the thermocapillary 
migration velocity of each of a pair of force-free drops in an ambient temperature 
gradient is then 

FT = ATVT,, (2.3) 

For the hypothetical case of two spherical drops in point contact (e=  O), 
U, = U, = Up, where U p  is the pair migration velocity. In this case, the hydrodynamic 
resistance functions AE and A; are given by RF and Rf, which describe the 
hydrodynamic resistances of each drop for pairwise translation in the point-contact 
configuration. Similarly, the thermocapillary resistances AT and AT are given by RT 
and R;, which describe the axisymmetric, thermocapillary resistances of two 
stationary, tangent drops embedded in an ambient temperature gradient. For tangent 
drops, the hydrodynamic and gravity or thermocapillary forces do not balance; a 
'contact force', &, which acts on each drop with equal magnitude but opposite 
direction at their point of tangency completes the force balances : 

m,g-Rf U:-Fg = 0, m,g-Rf UpG+Fg = 0, (2.5) 
R T V T , - R ~  u;-F; = 0, R;VT,-R: u;+F; = 0. (2.6) 

These yield the pair migration velocities and contact forces for buoyancy and 
thermocapillary motion : 

m, R: -m, Rf RT R:- R,T R: VT,. 
Rf + R f  FZ = g ,  F ; =  R f  + R f  

Away from the gap separating drops in near contact (e < l), the temperature and 
velocity fields can be computed to O(E) by considering tangent drops as described 
above. In the gap, each field is sensitive to the gap width, but its contribution to the 
overall hydrodynamic and thermocapillary resistances is very slight. Thus, 

A:: = RF+O(E), A; = Rf+O(e) ( E  < l), (2.9) 
AT = RT + O(E), A: = RF + O(E) ( E  4 l), (2.10) 

as demonstrated in $6.2. For drops in near contact, the limiting form of the individual 
drop velocities given by (2.4) can be expressed in terms of the pair migration velocity 
and the deviation velocities due to a resistance equal (within O(E)) to the contact force : 

(2.11) 
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where RE is the lubrication resistance defined by 
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(2.12) 

The relative motion of the two drops along their line of centres is simply 
U,, U,  - U, = e Z / R E .  (2.13) 

3. Lubrication resistance between two drops 

s+O are given by (Davis et al. 1989; Zinchenko 1983): 
The spherical drops, asymptotic formulae for the lubrication resistance in the limit 

where C(K,A) is an 0(1) constant given by Zinchenko (1982). For bubbles ( A  = 0), 
some representative values are C = +(2yE+In2) = 0.616 (minimum value) for K = 0, 
C = g(yE+In 2) = 0.847 for K = 1, and C = 0.878 (maximum value) for K = 0.678, 
where yE = 0.577.. . is Euler's constant; values for A = 0(1) are similar and are 
tabulated by Zhang & Davis (1991). 

Three distinguishing limits can be identified from the above formulae : 

RE = 6 n p a ~ - ~  ( A 4  % l), (3.3) 
RE = fn3p~a(2/& (1 + a (3.4) 
RE = 2npa[ln e-l+ ~c(K, 011 (A$ < c In (3.5) 

which correspond, respectively, to immobile drop interfaces (i.e. rigid particles, or 
drops with surfactant), ' fully-mobile ' interfaces, and to free (i.e. bubble) interfaces. 
Note that the drop viscosity does not affect the lubrication resistance for immobile or 
free interfaces, whereas the continuous-phase viscosity is unimportant for fully mobile 
interfaces. A uniformly valid estimate of the lubrication resistance for arbitrary 
viscosity ratio is given by 

which incorporates the above limits and aids the following scaling analysis. 

4. Scaling analysis 
4.1. Nearly equisized drops : 1 - K 4 1 

For 1 - K  < 1, the resistances of two nearly equal drops differ from each other by only 
O( 1 - K) .  Noting also that rnl/rnz = 1 + 3( 1 - K )  + O( 1 - K)', (2.7), (2.8), and (2.1 1) yield 
the following qualitative results for both buoyancy and thermocapillary motion of two 
drops in near contact (6 < 1) 

(212) -- U P  - 0 ____ = l + O ( I - K )  ( l - K <  l), 
UEQ 
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where UEQ is the migration velocity of an equisized pair and RE was estimated using 
(3.6). Recall also that the superscript 0 denotes an isolated drop. As expected, the 
relative velocity and mutual contact force vanish for 1 - K+ 0, and the deviation 
velocities are nearly equal. The mutual hydrodynamic shielding of an equisized droplet 
pair implies that Rr < RBvO. The minimum theorem of Hill & Power (1956) states 
that the hydrodynamic resistance of a body exceeds that of all bodies that can be com- 
pletely enclosed within its surface; thus, ~RBIO < RB. Similarly, it follows that 
iRTyo < RT < RT>O for equisized drops. Thus, according to (2.7), 

4.2. Small size ratios: K < 1 
For K 4 1, the flow field past a tangent pair of drops is dominated by the flow field 
associated with the isolated migration of the larger drop. An areal fraction, K ~ ,  of the 
larger drop surface at the stagnation point is shielded by the presence of the smaller 
drop. Since stresses are approximately uniform on the drop surface, the shielding by 
the smaller drop reduces the hydrodynamic and thermocapillary resistance on the 
larger drop in proportion to the fraction shielded. Thus, the pair migration velocity is 

(4.4) up/uy = 1 + O ( K 2 ) ,  

for both buoyancy-driven and thermocapillary-driven motion. 
The hydrodynamic force on the smaller drop is estimated as 

Ff = OluKaur(x,)l, (4.5) 

where u,(x2) is the radial component of the velocity field associated with the isolated 
migration of the larger drop evaluated at the centre of the smaller drop. Expanding the 
Hadamard-Rybczynski velocity field in spherical coordinates about the surface of the 
large drop at r = a, we obtain 

uG. 0 
UG = -1 [a+(+ 1)6z+o(~)]coso,  (4.6 a) h + l  

(4.6 b) 

where 6 = (r - a ) / a  4 1. Evaluating this expression at the centre of the smaller drop 
(6 = K, 0 = 0) and inserting the result into (4.5) yields an estimate for the hydrodynamic 
resistance on the smaller drop. Estimates for the two drops which are uniformly valid 
in h are thus 

Inserting the estimates (4.4) and (4.7) into the force balance (2.5) for the smaller drop 
yields an estimate of the mutual contact force for buoyancy-driven motion of a pair 
with disparate sizes : 

Note that Ff2 M F: % Fp for small and moderate viscosity ratios (KA < l), whereas 
FY2 = O(FF) = O(F:) for rigid spheres and highly viscous drops (KA % 1). 
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For K < 1, the thermocapillary-driven contact force is estimated from the force 
experienced by a smaller drop that is tangent to the stagnation point of a larger drop 
undergoing thermocapillary-driven migration. We will show that the force experienced 
by the smaller drop due to the velocity field produced by the larger drop dominates that 
due to interfacial tension gradients on the smaller drop. Thermocapillary motion is 
force free and torque free; thus, the net velocity field generated by the migration of an 
isolated drop is a potential flow field. Expanding the potential field about the surface 
of the larger drop at Y = a yields 

24: = - 3UT’O[6+ O(S”] cos 8, (4.94 

.8’ = -3UT.O [1+ O(6)l sine, (4.9 b) 

where 6 = (r--)/a < 1. Evaluating this solution at the centre of the smaller drop 
(6 = K ,  0 = 0) and employing (4.5) yields 

h+l FY2 T 

2- FT, FT 0 - o(K2)  = F12 = o(--) ~ h + l  FF ( K 4  l), (4.10) 

where FT, O is the thermocapillary force given by (1.5) for the larger drop when isolated. 
Using (1.5) and the temperature field around an isolated, non-conducting drop, it is 
seen that the force due to interfacial tension gradients on the smaller drop is O(K~FT~’ )  
for K < 1, which is dominated by the force due to the velocity field of the large drop. 
Thus, F,T, = F,T[l+ O(K)], as claimed above. 

If K < 1 and h 9 1, then (2.5), (4.7), and (4.8) indicate that U z  > Ufr0 (i.e. the larger 
drop speeds up due to the presence of the smaller drop) since the O ( K ~ )  reduction of RF 
dominates Ff2. However, the sign of U 2 -  Ufq0 is uncertain if h < O(1), since the 
reduction of RF is then comparable to Ffz.  Similarly, the sign of UpT - UT, O cannot be 
predicted, since the reduction of RF and RT are both O(FTz). In all cases, the 
consistency of (4.4) is apparent. 

Combining (4.8) and (4.10) with (1.3), (2.13) and (3.6) yields the relative drop 
velocities for K < 1 : 

(4.1 1) 

When h 9 1, the relative gravitational velocity is reduced from the pairwise velocity by 
a much greater factor than is the relative thermocapillary velocity. Finally, the 
estimates of (4.7) are inserted into (2.1 1) to yield 

(4.12) 

indicating that the relative velocity of the drops is due almost entirely to the deviation 
of the smaller drop velocity relative to the painvise motion. 

An important quantitative relationship between buoyancy-driven and thermo- 
capillary-driven motion may be derived for the case ~ ( h  + 1) < 1. A comparison of (4.6) 
and (4.9) reveals that 

U G / U T ”  = 3(h+ l )UT/Uf”+O(K(h+ 1)) ( K ( h +  1 )  4 1). (4.13) 

It therefore follows that the hydrodynamic forces, FF and F r ,  acting on the smaller 
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drop in buoyancy-driven and thermocapillary-driven motion, respectively, obey the 
quantitative relationship 

F,T/FTro = 3(A+ l)Ff/Ff ( ~ ( h +  1) Q 1). (4.14) 
Then, according to (4.8), the remark following (4.10), and (2.13), we have 

FF2/Ffz = UF2/Uf2 = 3(A+ 1) UT3'/luf3' (K < 1, KA $ 1). (4.15) 
For AK % 1, (4.8), (4.10), and (2.13) yields 

FWf2 = UTZ/42 - - 0 ( K-1UT. ' /Uy)  ( K  Q 1, K h  % 1). (4.16) 
In contrast to the result, (4. l), for 1 - K 4 1, (4.15) and (4.16) predict that the ratio of 
the thermocapillary and gravitational relative velocities of two nearly touching drops 
for h % 1, K Q 1 is significantly greater than the ratio of isolated drop velocities given 
by (1.6). This prediction is quantified by numerical calculations; the results are given 
by (7.8E(7.10). 

5. Temperature field surrounding two non-conducting spheres 
5.1. Tangent-sphere formulation 

The problem of two non-conducting, tangent spheres in an ambient temperature 
gradient is formulated in tangent-sphere coordinates (7, v, $), as depicted in figure 2 
and described by Moon & Spencer (1961, p. 104). This coordinate system is a right- 
handed, orthogonal, curvilinear coordinate system related to a cylindrical coordinate 
system (z,  P, 6)  by 

Thus, the origin is at the point of contact between the tangent spheres, and the distance 
from the origin is given by r = (p2+z2)i = 1 / ( ~ 2 + ~ 2 ) ~ .  In this coordinate system, 
tangent spheres of radii a and K a  with centres on the z-axis at z = - a  and z = + K a  are 
defined by the constant coordinate surfaces 

1 1 (sphere I), 7 = q2 = - (sphere 2), 
=-% =-2a 2 K a  

and the conjugate coordinate surfaces, v = constant, are tori with zero inner radii. 
For non-conducting drops, the temperature field is conveniently solved using a 

stream function, $, to define the temperature gradient by analogy to the customary 
definition of an incompressible, axisymmetric velocity field (Sadhal 1983 ; Feuillebois 
1989 ; D. J. Jeffrey, personal communication). Accordingly, the components of the 
temperature gradient are given by (Kim & Karrila 1991, p. 97) 

Since the temperature field and a potential-flow velocity field both satisfy Laplace's 
equation (1.8) and boundary conditions (1.9) and (l.lO), the two fields are 
mathematically identical. Accordingly, the stream function that defines the temperature 
field satisfies 
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v = o  v = o  > 

v + + -  -q  = 771 = q + + -  

I 
q = o  

FIGURE 2. Tangent-sphere coordinates for two spheres in point contact. 

with boundary conditions 

+ = 0, 71 = -71, +TZ, (5.6) 

where 
coordinates. If we substitute a solution of the form 

and yZ are given by (5.2). Equations (5.4)-(5.6) are separable in tangent sphere 

Wrl) N(v)  
(72 + v2)i +=  

into (5.4), we obtain ordinary differential equations for M and N :  

d2N dN d2M 
dT2 dv2 dv s2M = 0, v ~ - - - - v - + s ~ v ~ N  = 0, -- 

(5.7) 

where s is a continuously valued separation constant: 0 < s < co. The solutions are 

(5.9) M = c1 sinh sy + c2 cosh q, N = c3 vJ,(sv) + c4 vq(sv), 

where J1 and 5 are first-order Bessel functions of the first and second kind, 
respectively. Since Y,(sv) is singular at v = 0, the entire z-axis external to the spheres, 
this solution is eliminated: c4 = 0. 

A general, non-singular solution of (5.4) that satisfies (5.5) is 

[X(s) sinh s1;1 + Z(s) cosh sr] J,(sv) ds + - - 
2 '( $ + v 2  )'VT,, (5.10) +=  

where X(s) and Z(s)  are functions that are determined from the boundary conditions 
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on the drop surfaces. The procedure for determining X(s)  and Z(s) is facilitated by the 
identity (Erdelyi et al. 1954) : 

which allows (5.10) to be rewritten as 

[X(s) sinh sy + Z(s) cosh sy +is e-'ITI VT,] J,(sv) ds. 
(y2+v2)i 0 @ =  

The remaining boundary conditions, (5.6), are thus reduced to 

-X(s)sinhsy, +Z(s)coshsy, = -+see-s~lVTm, 
X(s)  sinhsy,+Z(s)coshsy, = -~see-'~zVTm. 

These are inverted to yield 

sinhsy, sinhsy, -']VTw. 
sinh s(y, + 7,) 2 

s sinh s(y, - y,) 
2 sinh s(yl + 7,) X(s) = -- VT,, Z(S) = s 

(5.11) 

(5.12) 

(5.13) 
(5.14) 

(5.15) 

Substituting (5.15) into (5.10) yields an analytical solution for the axisymmetric 
temperature field external to non-conducting, tangent spheres (0 6 vl, y, < 00). Far 
from the droplet pair (y2+v2+O), the integral term in (5.10) describes a dipole 
disturbance. The temperature gradient on the drop surfaces is obtained according to 
(5.3) while making explicit use of (5.6); the result is 

and (VT),  = 0 for y = -rl and y = y,, as required for non-conducting drops. 

5.2. TemperatureJieId near the contact point 
We now determine the asymptotic behaviour of the temperature gradient on the 
surface of non-conducting, tangent drops near the contact point. The results of this 
analysis are needed in $6 for determining the flow field in the near-contact region. 

Rewriting (5.16) using Ji(x) = -J , (x)  and an integral representation (Abramowitz & 
Stegun 1972, pp. 358-378) for Jo(x), we obtain the following expression for the 
temperature gradient on the surface of drop 1 : 

where the temperature gradient is given by the real part of the integrand. Since this is 
an even function of s, we can rearrange (5.18) : 

By Jordan's Lemma (Carrier, Krook & Pearson 1966, pp. 77-101), the integral over 
s can be determined from an integral in the complex plane on a contour that includes 
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the real axis and a semicircle in the upper half-plane. The integrand has a removable 
singularity at s = 0 (simple pole with zero residue) and simple poles at 

ikn 
s k  = - 

7l+% 
( k =  1,2,3 ,..., CO), 

with residues 

(5.20) 

(5.21) 

Using the residue theorem (Carrier et al. 1966, pp. 77-101), we find 

Then, recognizing the integral representation for the modified Bessel function, K,,(x), 
and using the relationship K&c) = - K,(x), allows the surface temperature gradient to 
be expressed as 

where we have used (5.2). A similar expression is obtained for the temperature gradient 
on the smaller sphere surface: 

A- (VT), - 2n2 (( 1 + 4 x ‘ a ’ ~ ~ ) ~ ) ~  k2( - l)k sin (E) Kl (---). 2kn~av (5.24) v TI l+K k=l 1 + K  1 + K  

The tangential extent of the near-contact region between the drops is given by 
p = O(a&) (Davis et al. 1989). Thus, according to (5.1) and figure 2, the near-contact 
region of the drop surfaces is defined by 

(5.25) 

To examine the gradient on the drop surfaces near the contact point, we consider (5.23) 
and (5.24) in the limit described by (5.25). The result is 

a v  = o(E-+) (e < I), 7 = - rl, y2. 

where we have used the identity limt+OOKl(t) = (2/71.t)tept. Hence, we conclude that 
(VT), is exponentially small on the near-contact portion of the drop surfaces. 

6. Solution of the flow field for pairwise motion 
6.1. Tangent-sphere formulation 

The solution for the flow fields inside and outside two touching drops is formulated 
using the tangent-sphere coordinates described in the previous section. Under the low- 
Reynolds-number conditions considered herein, the axisymmetric stream functions for 
flow fields inside and outside of the tangent drops satisfy (Kim & Karrila 1991): 

E4$ = E4$, = 0, (6.1) 
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where $i denotes the internal stream functions for each drop ( i  = 1,2), $ denotes the 
stream function associated with the external flow field, and E47) = E2(E2$) with the E2 
operator given by (5.4). 

The requirements of uniform flow at infinity, vanishing normal velocities, continuous 
tangential velocities, and the tangential stress jump, (1.1 l), yield nine boundary 
conditions for @ and $ i :  

6/” - gqy = P W ) ”  (3 = - 31, + 32), (6.6) 
where rl and 7, define the drop surfaces according to (5.2), U p  is the pairwise migration 
velocity of the tangent drops, P = -ay/aT is the variation of interfacial tension with 
temperature, and (VT),  is the tangential temperature gradient on the drop surfaces 
given by (5.16) and (5.17) for non-conducting drops. The tangential traction on the 
drop surfaces, crqv and 2q,,, i ,  are (Reed & Morrison 1974) : 

(6.7) 

(6.8) 

If E2$* = 0, then $ = z$*, and $ = P$* are linearly independent solutions of (6.1). 
Thus, a general solution can be constructed by the superposition $ = c1 z$* + c, r2$*, 
where $* is given by the first term of (5.10); thus, a general, non-singular solution of 
(6.1) that also satisfies (6.2) is 

Uqu = -p;(32+V2)t~[(qa+V”$], 1 a 2  

a3 

1 a 2  

33 
c?qv, i = - Ap J (32 + ”2): 2 [($ + V 2 ) : I j i ] .  

[ (A@) + C(s) 3) sinh sq + (B(s) + D(s) 3) cosh s3] J,(sv) ds 
( q 2 + V 2 g  0 

$ =  

which can be written using an identity (Erdelyi et al. 1954), 

to yield 

[ ( 4 s )  + C(s) 3) sinh s3 + (B(s) + D(s) 3) cosh sy 
(Y2+V2)i 0 

@ =  

(6.10) 
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Noting that -yl 3 y 3 - co within drop 1 and y, < y < + co within drop 2, non- 
singular stream functions that describe the internal flow fields are given by 

(6.12) 

(6.13) 

The unknown functions, A($)-H(s), are determined from the eight boundary 
conditions on the drop surfaces. Inserting the stream-function expressions (6.11)-(6.13) 
into boundary conditions (6.3)-(6.6) yields eight algebraic equations that determine 
A(sEH(s). From (6.4), 

- W - y 1 m  = 0, (6.14) 

G(s) + y2 H(s) = 0, (6.15) 

and so E(s) and G(s) are easily eliminated from the system of equations. The remaining 
six algebraic equations are 

- A(s) sinh syl + B(s) cosh sy, + C(s) yl sinh sy, - D(s) yl cosh syl = - + e-'71 y1 + Up,  

(6.16) 
( l )  

A(s) sinh sy, + B(s) cosh sy, + C(s) y, sinh sy, + D(s) y, cosh $7, = - e-'72 ( y, + i) Up,  

(6.17) 
- sA(s) cosh sy, + sB(s) sinh sy, + C(s) (sy, cosh sy, + sinh sy,) 

- sA(s) cosh sy, -sB(s) sinh sy, - C(s)(sy, cosh sy, + sinh sy,) 
(6.18) - - D(s) (sy, sinhsy, + cosh sy,) + F(s) e-'71 = isy, e '91UP, 

- D(s) (sy, sinh sy, + cosh sy,) + H(s) e-'ql = -&I, e-'Wp, (6.19) 
sA(s) sinh sy, - sB(s) cosh sy, - C(s) (2 cosh syl +sy, sinh sy,) + D(s) (2 sinhsy, 

PVT,, (6.20) s sinh sy, + sy, cosh syl) + 2A4s) e-'Y1= f e-'h s 
( 'l- ') up-sinhs(yl + 7,) ,u 

- sA(s) sinh sy, - sB(s) cosh sy, - C(s) (2 cosh sy, + sy, sinh syg) - D(s) (2 sinh s ~ ,  

+ sy, cosh sy,) - 2hH(s) e-'Tz = e-'78 s s sinh sy, PVT,. (6.21) 
( yz-1)U,-sinhs(yl+y2)P 

Unlike the solution for the temperature field, given by (5.10) and (5.19, a closed-form 
solution for the velocity stream function is impractical. An exception is the special case 
of equisized drops, which is of limited interest herein because they migrate with equal 
velocity. 

The forces acting on the drops are (Reed & Morrison 1974): 
m 

4 = 4x Jo s[A(s) - B(s)] ds, 4 = -47c 1; s[A(s) + B(s)) ds. (6.22) 

These expressions are numerically integrated on a set of quadrature points. Taking 
U p  = 1 and PVT, = 0 gives R,H = E ,  conversely, setting U p  = 0 and PVT, = 1 yields 
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RF = 4- The results of Reed & Morrison (1974) are recovered by the first choice; the 
latter choice yields the desired forces on a pair of non-conducting, stationary, tangent 
drops aligned with an ambient temperature gradient, VT,. 

The buoyancy-driven and thermocapillary-driven pair and individual drop velocities 
and contact forces are obtained by inserting the pairwise resistances, Rf and RT, and 
the formulae for the lubrication resistance, RE, into the expressions derived in $2. 
Numerical results are presented in the $7. 

6.2. Velocity Jield near the contact point 
The validity of (2.9) and (2.10) requires an analysis of the velocity field in the 
lubrication gap between the drops. The requisite analysis of the velocity field for two 
drops in buoyancy-driven motion is available from previous work by Yiantsios & 
Davis (1991). In this section, we summarize this analysis and then generalize it to 
include thermocapillary-driven motion. 

Yiantsios & Davis (1991) demonstrated that the primary velocity field associated 
with axisymmetric, painvise translation of drops in near contact decays algebraically 
in the near-contact region : 

u / u g  = O(p/a) (p = O(ad)). (6.23 

It follows that the resultant hydrodynamic stress acting on the near-contact region 
from the primary, buoyancy-driven velocity field makes an O(&) contribution to the 
general hydrodynamic resistance functions, A: and A%, defined by (2.1). The velocity 
field away from the gap is obtained to O(e) by considering a pair of drops in point 
contact. Thus, (2.9) is correct as asserted. Yiantsios & Davis (1991) give scaling 
arguments that demonstrate that the lubrication flow dominates the primary, 
buoyancy-driven velocity field in the near-contact region provided that the drops are 
not almost equisized (1 --K 9 d). Since the lubrication flow dominates the primary, 
buoyancy-driven velocity field in the near-contact region, the flow fields may be 
decoupled in the gap region, which is advantageous when local droplet deformation 
becomes significant. 

In thermocapillary-driven flows, fluid is driven by interfacial tension gradients that 
may affect the fluid velocity in the gap region. The interfacial tension gradients is 
proportional to the tangential component of the temperature gradient on the drop 
surfaces: (Vy), = p(VT),;  thus, using (5.26) we find that interfacial tension gradients 
are exponentially small in the gap region and therefore insignificant. The primary 
thermocapillary-driven velocity field in the near-contact region can therefore be 
reliably estimated using (6.23) with the painvise velocity given by U,T instead of Ug. 
It follows that the velocity field in the gap region affects the thermocapillary resistance 
functions, AT and A:, at O(d); the O(e) contributions to the temperature and velocity 
field away from the gap of two slightly separated drops dominate; thus, (2.10) is 
justified. The same scaling arguments given by Yiantsios & Davis (1991) apply with the 
same result : lubrication flow dominates the primary, thermocapillary-driven flow in 
the near-contact region provided d < 1 - K. To leading order, the lubrication flow that 
results from the nearly constant contact force, &, is the same for buoyancy-driven and 
thermocapillary-driven motion. 
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FIGURE 3. Thermocapillary and buoyancy pair migration velocities normalized by the isolated 
migration velocity of the larger drop; the solid lines are for h = 0, the dashed lines are for h = 1, and 
the dashed-dotted lines are for h + co. 

7. Numerical results and discussion 
7.1. Pairwise migration velocity 

Figure 3 shows the axisymmetric, buoyancy-driven and thermocapillary-driven 
painvise migration velocity, normalized by the isolated migration velocity of the larger 
drop. Because of this normalization, parameters such as ,8, VT,, Ap, and g do not 
appear in the dimensionless results presented, whereas the dimensional results for the 
drop velocities are proportional to these parameters because of the linearity of the 
governing equations. Results for h = 0 (bubbles), h = 1, and A+ co are shown. For 
buoyancy motion, h -+ co describes the sedimentation of rigid particles; for 
thermocapillary migration, it describes the limiting case for highly viscous drops (rigid 
particles do not undergo thermocapillary migration). To within 1 %, the limiting result, 
A+ co, is obtained for h 2 100. The buoyancy results agree with those of Reed & 
Morrison (1974). 

In contrast to the scaling result for buoyancy motion, (4.3) does not predict whether 
the thennocapillary velocity of a pair of equal drops ( K  = l), UgQ, is greater or less 
than that of a single drop, U:,O, because both the thermocapillary driving force and 
the viscous opposing force on each drop are reduced by the pairwise configuration. In 
fact, the results depicted in figure 3 indicate that equisized bubbles undergo painvise, 
thermocapillary migration with the same velocity as an isolated bubble, which is 
consistent with earlier results for equisized bubbles (Feuillebois 1989 ; Acrovis, Jeffrey 
& Saville 1990); for h =I= 0, UgQ is only slightly less than U?,O. The buoyancy-driven, 
painvise migration velocity of equisized drops exceeds the isolated drop velocity by 
44% for bubbles ( A  = 0) and by 55% for rigid particles (A+ 00) and 
1.44 < U$,/U,"*O < 1.55 for A = O(1) which is consistent with (4.3). 

The results depicted in figure 3 indicate that the buoyancy-driven doublet velocity 
exceeds the singlet velocity (Ug  > U:po) for almost all K and A. The enhancement 
increases monotonically with h and K, except for A = 0, K < 0.25. For h = 0 and 
K < 0.37, the buoyancy-driven, pair migration velocity apparently lags slightly 
(< 0.5 %) behind U f s 0 .  In contrast, the thermocapillary-driven doublet velocity obeys 
U ;  < UTTO for all h and K.  To within 3 %, the value of U,'/U?.O is insensitive to A ;  
for K > 0.6, the value of U,'/U?,O decreases slightly with A ;  the trend reverses for 
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FIGURE 4. Normalized (according to (7.1)) contact force between two drops; the solid line is for 
thermocapillary motion, the dashed line is for buoyancy motion, and the dotted line is for K+O. 

K < 0.5. At K M 0.6, the value of U,'/UT,O attains a minimum value of 0.88. For 
nearly equisized drops, U p  appears to decrease linearly with 1 - K ,  consistent with (4.2); 
furthermore, the results appear consistent with (4.4) for K --f 0. 

7.2. Contact force 
Figure 4 depicts the scaled, buoyancy (dashed curves) and thermocapillary (solid 
curves) contact forces between drops undergoing axisymmetric motion for several 
viscosity ratios; dotted curves correspond to the K --f 0 limit. The contact force has been 
made dimensionless by rescaling as 

where Ff  and FT* O are the buoyancy and thermocapillary (isolated drop) forces acting 
on the larger drop, respectively, given by (1.2) and (1.5). This choice of normalization 
is consistent with the scaling results, (4.8) and (4.10), for K 4 1, and the asymptotic 
result, (4.15), for K(A+ 1) 4 1. For nearly equal drops (1 - K 4 l), we note that 
1 - ~ ( 1 +  A)/ (  1 + KA) M (1 - ~ ) / ( l  +A),  and the results near the right-hand side of figure 
4 are seen to verify the scaling result, (4.1). 

7.2.1. Small size ratios: K 4 1 
When K 4 1 and KA 4 1, the asymptotic formula, (4.15), predicts that FE* = FG 12 *. 

This result is verified by figure 4. The limiting contact force for K -+ 0 is depicted by the 
solid curve in figure 5 .  These numerical results apparently tend to the dotted lines that 
have the formulae 

FF2* = FT2* = n2/6 ( A  4 1); FY2* = FT2* = 21nA-: ( A  9 1). (7.2) 

Analytical derivations for these results were not found. To within 2 %, the numerical 
results for all A are represented by 

2h In ( A  + 28) -:A + 10 
A+6 

FF2* = FT* = ( K  4 1). 12 (7.3) 
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FIGURE 5. Normalized (according to (7.1)) contact force between two drops; the solid line is the 
limiting result for K + O ,  the dotted lines are the limiting results: F:2 = x2/6,  and F:2 = 21nh-4 
obtained for h + 1 and h % 1, respectively. 

Combining this formula with the rescalings, (7. l), yields 

2h In ( A  + 28) -$A + 10 FT2 - 3K2 
FT.0 h + 6  

(K < 1). -- (7.5) 

The first equality in (7.4) follows from (2.5) and (4.4) and gives the hydrodynamic 
resistance of the smaller drop in near contact with a larger drop. The complement of 
(7.4) was computed by Goren (1970) for rigid spheres: 

Rf/Rf.O = 4 . 8 4 4 ~ ~ ,  Ff2/Ff = 3 . 8 4 4 ~ ~  ( K  < 1, AK % 1). (7 * 6) 
Combining this with (7.5) gives the formula complementary to (4.15) : 

7.3. Relative drop velocity 
7.3.1. Asymptotic formulae for K < 1 

with (3.3F(3.5) for the lubrication resistance to yield the asymptotic formulae: 
According to (2.13), the asymptotic formulae (7.4)-(7.6) for F,, may be combined 

F(6,h) (K < 1, KA 4 I), (7.8) uf2 - A+: 2hln(h+28)-$h+10 
- K(m) (h+6)(h+ 1) 

(K < 1, Kh 4 I), (7.9) uf2 - - - 3 . 8 4 4 ~ ~ F ( ~ ,  A) uG, 0 
1 

(7.10) 
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E 

FIGURE 6.  Thermocapillary-driven (solid lines) and buoyancy-driven (dashed lines) relative drop 
velocities normalized by the isolated migration velocity of the larger drop for a size ratio of K = 0.5; 
the symbols are from exact bispherical coordinate solutions. (a) h = 0 ;  (b) h = 0.1; (c)  A = 1; (d) 
h = 10; (e) h = 100; cf) h = 1000. 

where F(E, A )  = 6 (A& P l), (7.1 1) 

(1 % A E ~  Elns-l), (7.12) 

(he; 4 E In E-'). (7.13) 

16 
F(s, A )  = +-1(&p 

7I 

F(E, A) = 3[ln 2e-l + 2yJ1 

1.3.2. Numerical results 
Figure 6 depicts the buoyancy-driven (dashed curves) and thermocapillary-driven 

(solid curves) relative drop velocities as a function of gap width for a radius ratio of 
K = 0.5, with viscosity ratios of h = 0, 0.1, 1, 10, 100, and 1000. According to (2.13), 
it follows that the ratio of U f z  to U?, will be independent of E for E 4 1, because both 
FY2 and FT, are independent of E in this limit. In fact, the numerical results predict that 
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U,',/Uf, equals 1.82, 1.95, 2.93, 7.13, 14.3, and 21.7 times UT,o/Uf,o for K = 0.5 and 
h = 0, 0.1, 1, 10, 100, and 1000, respectively. The normalized, thermocapillary-driven 
relative drop velocity for K = 0.5 is significantly larger than that for buoyancy-driven 
motion, particularly for h > 1, in contrast to the prediction (4.1) of comparable values 
for 1 - K  < 1. However, using (4.15) for KA < 1 and (7.7) for KA > 1, yields good 
estimates: Ul',/Uf, = 3, 3.3, 6, 6.02, 13.2, and 20.4 times UT,'/UfPo for K = 0.5 and 
h = 0, 0.1, 1, 10, 100, and 1000, respectively. 

It is interesting to note from figure 6 several manifestations of the distinct limiting 
forms of the lubrication resistance, (3.3)-(3.5). For h = 0, the relative velocity exhibits 
the l/ln e-l dependence characteristic of free surfaces; this behaviour is again evident 
for h = 0.1 for e > where he; < elne-l, but the dependence switches to the & 
behaviour characteristic of a fully mobile interface for E < where he; > elne-I. 
For h = 1, the fully mobile behaviour is evident over the entire range of e, which 
follows since she- '  <he: < 1 under these conditions. For h = 10 and 100, the 
immobile e-dependence is evident for ehi > 1 ; fully mobile behaviour is observed for 
smaller values of e. In contrast, immobile interface behaviour is apparent for h = 1000 
for the entire range of e shown; presumably, the interface would become fully mobile 
for e < 

The results of the lubrication calculations depicted in figure 6 were compared with 
the exact, bispherical-coordinate solutions (calculated on our computer) of Zinchenko 
(1978) and Keh & Chen (1990), as indicated by the + and x symbols for buoyancy- 
driven and thermocapillary-driven motion, respectively. Calculations using the 
authors' FORTRAN algorithm compiled on our computer for E Q 2.25 x lop4 showed 
essentially exact agreement with the lubrication solution for buoyancy-driven motion, 
whereas numerical convergence of calculations for thermocapillary-driven motion was 
not obtained for e d 2.25 x The published results of Keh & Chen (1990) are 
restricted to e 2 0.03. For buoyancy motion, the results indicate that the exact solution 
tends to the lubrication solution for e + 0 ; convergence appears to be slowest for 
A = O(1). By contrast, the exact thermocapillary solution tends much more slowly to 
the lubrication solution, and the rate of convergence is slowest for h % 1. An exception 
to this trend occurs for h = 0; in this case, convergence is not apparent. The source of 
the discrepancy is unclear but may be related to the computational difficulties 
encountered using the exact, bispherical coordinate solution for small gap widths 
(E < 2.25 x The exact numerical results of Satrape (1992) and Meyyappan, 
Wilcox & Subramanian (1983) for bubbles ( A  = 0) are, unfortunately, restricted to 
e 2 0.02 and E 2 0.31, respectively. 

7.4. Individual drop velocities 

where he; < 1. 

7.4.1. Numerical results 
and h = 0, 0.1, 

1, 10, 100, and 1000; the results are normalized by Uy. Solid curves depict the pair 
velocity, Up,  which is attained by both drops in the limit e -+ 0 (see figure 3); the dashed 
curves depict U,, which exceeds Up, and the dashed-dotted curves depict U,, which lags 
Up.  Inspection of figure 7 reveals that, for 1 - K  < 1, 17,- U p  x Up-  U, and the 
deviations appear to grow linearly with 1 - K, consistent with the scaling predictions 
(4.2). In contrast with (4.2), however, the thermocapillary-driven, deviation velocities 
appear to be significantly larger than those for buoyancy-driven motion, especially for 
h $ 1. A comparison of figures 7(a) and 7(g), 7(b) and 7(h), 7(c) and 7(i), and 7(d) 
and 7(j) exemplifies how U,, vanishes as e+O for fixed A. The very slow, logarithmic 
decay for e k  < elne-I is most apparent for h = 0; as figures 7(b) and 7(h) illustrate, 

Figure 7 depicts the individual drop velocities for E = and 
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FIGURE 7(u-f). For caption see facing page. 

even slight drop viscosity (A = 0.1) significantly retards U,, as E is decreased. This 
observation is explained by (7.12) and (7.13): free and fully mobile interfaces exhibit 
qualitatively different behaviour as demonstrated by figure 6 for h = 0 and 0.1. 

The progression depicted in figure 7(a-f) for e = lo-, indicates that U,, is reduced 
as the viscosity ratio, A, is increased; however, the reduction is much more pronounced 
for buoyancy-driven motion. For E = lo-,, the results indicate that U:, < 0.005UF*0 
for A 2 10; for the same gap width, U,T, decreases with increasing A for 
h < 10 (UT, < O.O4UT,O for h = 10); however, U,T, increases slightly with increasing 
h in the range 10 < A < 1000 CUT, < 0.05UT3° for A = 1000). The latter observation is 
predicted by the asymptotic formulae (7.10) and (7.13) that were derived for K 4 1; 
accordingly, U $  = O(KeInA) for A > O ( d ) .  This regime is not attained in the 
progression depicted by figure 7(g-j) for E = 

The + and x symbols in figure 7 for B = lo-, are from exact bispherical-coordinate 
calculations for buoyancy and thermocapillary migration using the source code of 
Zinchenko (1978) and Keh & Chen (1 990). Note that the present lubrication results for 
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FIGURE 7. Individual drop velocities, normalized by the isolated migration velocity of the larger drop, 
for two drops in close contact; the solid line is the painvise velocity of touching drops, the dashed 
line is the velocity of the larger drop, and the dotted-dashed line is for the smaller drop. (a) h = 0 ;  
(b)  h = 0.1; (c) h = 1; (d )  h = 10; (e) h = 100; cf) h = 1000; (g) h = 0 ;  (h) h = 0.1; (9 h = 1; (j) 
A = 10. (a-n = 10-2; (h-j) = 10-4. 

the thermocapillary-driven motion of each drop are less accurate than those for 
buoyancy-driven motion, particularly for h B 1 which is consistent with figure 6. For 
E = essentially exact agreement was obtained for buoyancy motion. Bispherical- 
coordinate calculations for thermocapillary migration were not possible for 6 = 
because of the lack of numerical convergence. 

7.4.2. Small size ratios: K 4 1 

(7.6), we have, at leading order 
The individual drop velocities are generally given by (2.11). From (4.7), (7.4), and 

Ul-Up 2hln(h+28)-~h+lO 
~ = K2 ( K <  1, K h  < I), 

u 1 2  (h+6)(h+ 1) 

(7.14) 

(7.15) 

___ u1- U P  = 4 . 8 4 4 ~ ~  ( K  < 1, K h  % I), (7.16) 

where U,, is given by (7.8)-(7.10). These results predict that UpT- U? vanishes linearly 
as K + 0 ; the same is true for U z  - U: if KA % 1 ; for KA B 1, the formulae predict that 
U g -  U:+O as K ~ .  For both migration mechanisms, U,-  U,+O as ic2 if KA < 1, 
otherwise faster. Each of these observations is qualitatively apparent in figure 7, 
particularly, the linear behaviour of U p -  U,  for K 4 1. 

u12 
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7.5. Discussion 
During thermocapillary migration, a drop ‘swims’ through the suspending phase as a 
result of an interfacial tension gradient that convects surrounding fluid along the drop 
surface from the forward to the rear stagnation point. The drop is propelled in the 
direction opposite to the momentum of the convected fluid. This contrasts with the 
mechanism of buoyancy-driven migration in which surrounding fluid is only passively 
convected past the drop surface as the result of a body force. In both buoyancy-driven 
and thermocapillary-driven near-contact motion of a pair of drops, continuous-phase 
fluid must be forced out of the lubrication gap as the larger drop approaches the 
smaller drop. The thermocapillary-driven approach is enhanced by the withdrawal of 
fluid from the lubrication gap as a result of fluid convection along the larger drop 
surface. This is partially offset by the injection of fluid into the lubrication gap resulting 
from convection along the surface of the smaller drop. For K < 1, the withdrawal of 
fluid by the larger drop easily dominates the injection from the smaller drop, consistent 
with (4.15) and (7.7) which predict that the thermocapillary-driven approach is more 
effective than the buoyancy-driven approach. 

The qualitative agreement between the predictions of the asymptotic formulae 
derived for K 4 1 and the numerical results depicted in figures 6 and 7 suggest that the 
asymptotic behaviour for K + O  pervades to finite K .  In fact, it seems likely that the 
withdrawal of fluid from the lubrication gap by the larger drop should dominate the 
injection from the smaller drop except when the drops are nearly equisized (1 - K < 1). 
Only for nearly equal drops will the withdrawal and injection of continuous-phase fluid 
be approximately balanced and only then will near-contact thermocapillary motion be 
qualitatively similar to buoyancy-driven motion. Thus, the scaling results for nearly 
equisized drops have a rather limited domain of validity (K 2 0.9), while the asymptotic 
formulae for K 4 1 are qualitatively correct even for K = 0.5 or larger. 

8. Concluding remarks 
In this work, we have computed the axisymmetric, near-contact thermocapillary 

motion of a pair of non-conducting drops. An analogy with buoyancy-driven droplet 
migration is revealed. Both mechanisms involve a superposition of a pairwise 
migration and a secondary, relative motion of the drops that results from a constant 
interdroplet, contact force balanced by a lubrication resistance. 

For very nearly equisized drops, a scaling analysis predicts qualitatively similar 
behaviour for both buoyancy-driven and thermocapillary-driven near-contact motion; 
the relative velocity between widely separated drops yields a criterion, (1.6), that 
reliably estimates the importance of buoyancy-driven and thermocapillary-driven 
contributions to the relative near-contact drop velocity. However, for small size 
ratios ( K  4 l), the scaling analysis predicts distinct, qualitative differences for the two 
mechanisms of droplet motion. Most importantly, the simple criterion, (1.6), will 
always underestimate the importance of the thermocapillary contribution to the 
relative drop velocity for K < 1 ; for large viscosity ratios ( A  9 l), the thermocapillary 
contribution will be much larger than predicted by (1.6). 

Numerically results for the painvise migration velocity, contact force, and the 
relative and individual drop velocities are presented for a wide range of viscosity and 
size ratios. The scaling predictions for K < 1 are quantified with asymptotic formulae 
for the contact force and the relative and individual drop migration velocities. Scaling 
predictions for 1 - K  < 1 are qualitatively observed in a limited region: K 2 0.9. 



130 M .  Loewenberg and R. H. Davis 

However, many qualitative predictions for K 4 1 are clearly manifest for K = O(1). In 
particular, the ratio of the thermocapillary-driven to buoyancy-driven relative drop 
velocities, depicted in figures 6 and 7, qualitatively obeys the asymptotic formulae 
(7.8)-(7.10) for all size ratios. This finding disqualifies (1.6) as a valid estimate for the 
importance of thermocapillary and buoyancy contributions to the near-contact relative 
drop velocity in polydisperse emulsions. A qualitative explanation for these findings 
was put forth in 57.5. 

The results depicted in figure 6 and the computational difficulties encountered with 
an exact series solution for thermocapillary migration at small gap widths suggest that 
the lubrication solution formulated herein will be particularly useful for obtaining 
accurate predictions of the thermocapillary-driven relative velocity of drops in close 
contact, such as are needed for calculating coalescence rates. In obtaining this solution, 
a new analytical result, given by (5.10) and (5.15), was obtained for the axisymmetric 
temperature field around an unequal pair of non-conducting, tangent spheres 
embedded in an ambient temperature gradient. A new asymptotic result, given by (7.4), 
was also obtained for the hydrodynamic resistance on a very small drop ( K  4 1, KA 4 1) 
tangent to a much larger, translating drop; this complements the earlier result of Goren 
(1970) for rigid particles and very viscous drops ( K  4 1, KA 9 1). 

We conclude by noting that lubrication forces will cause the drops to deform slightly 
in the region of near contact. An estimate of the deformation is 4 2 / y ,  and so the 
deformation is small compared to the gap width only so long as F,,/ays 4 1. This 
criterion may be met for a small initial separation, but it will eventualy be violated as 
6 -+ 0. Fortunately, the painvise migration velocity and contact force are unaffected to 
leading order by the details of the near-contact region, for both thermocapillary-driven 
and gravity-driven motion, provided that in the former case the thermal conductivity 
of the drops is small relative to that of the continuous phase. Thus, the analysis of 
Yiantsios & Davis (1990, 1991) for the time evolution of the relative drop velocity and 
near-contact deformation for buoyancy-driven motion may be directly extended to 
thermocapillary-driven motion of non-conducting drops. 

This work was supported by NSF grant CTS-8914236 and NASA grant NAG3- 
1277. The authors are grateful to Dr A. Zinchenko and Dr H. J. Keh for providing the 
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